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ABSTRACT 

This work aims to study forced vibration characteristics of Fibre-Reinforced Polymer (FRP) 

composite laminated beam with different properties, through a development of an analytical 

model using the Green function method. The forced vibration characteristics of a FRP 

laminated beam structure is generally more complex than those of a homogeneous beam 

structure since each layer is anisotropic with a different layer having different properties. In 

this work, the Green function method is used to model an FRP laminated beam to solve the 

associated equation of motion. The proposed analytical model allows a more efficient 

parametric analysis to be done on FRP laminated beams, in contrast to using a numerical 

model that is more computationally expensive. The analytical model is verified through a 

comparison with the numerical model of FRP laminated beam. Based on the developed model, 

a FRP laminated beam with various fibre orientations, is studied under forced vibration, 

demonstrating the effectiveness of the proposed method for forced vibration analysis of a 

laminated beam.  

 

1.    INTRODUCTION 
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Composite laminate beams have the advantages of lightweight, high modulus and good corrosion 

resistance, and they are therefore widely used in many engineering applications. Hence, it is 

important to be able to investigate the vibration characteristics of composite laminate beams with 

different designs for a variety of applications. Previous research works have investigated analytical 

modelling for free vibration of composite laminate beam for different applications [1-3], but there 

are more limited works focused on the forced vibration of composite laminate beams. 

There are a number of analytical modelling methods that have been developed for forced 

vibration analysis of beam structures. One of the most commonly used methods for modelling 

forced vibration is to represent the structural dynamic response in terms of the associated 

eigenfunctions [4]. The method utilises a solution in the form of the summation of an infinite series, 

which needs to be truncated down to a certain number of terms in calculation, causing a truncation 

error. There are other methods, such as the double Laplace transform method and the method of 

expansion in eigenforms, which can provide exact solutions although the solutions for obtaining 

forced vibration response tend to be more complicated  [5-6].  

On the other hand, the Green function method has a generally reliable performance for forced 

vibration analysis if compared with the previous methods because it has a relatively simple 

formulation whilst providing exact solutions. Abu-Hilal demonstrated the feasibility of the Green 

function method for modelling forced vibration of beam structures with different boundary 

conditions and applied excitations [6]. Kukla et al. demonstrated the effectiveness of the Green 

function method for analysing vibration response of stepped beams with axial load [7]. Li et al. used 

the Green function method to solve vibration response of Timoshenko beams with damping effect 

[8]. In addition, the Green function method has also been used by other researchers to analyse 

coupled dynamic problems of beams such as for thermoelastic coupling vibration  [9-10]. The 

accuracy of the Green function method in solving forced vibration problems have been 

demonstrated [7-8, 11], although they are not focused on analysing the forced vibration of a 

composite laminate beam. Hence, this work intends to fill this gap by developing a model for forced 

vibration of an FRP laminate beam that is based on the Green function method.  

 

2.   MODELLING OF A COMPOSITE LAMINATE BEAM 

 

2.1. Composite laminate beams: 

The structure of a composite laminate beam composed by fibres and polymer resin is illustrated 

in Figure 1, with the angle of fibre orientation in each layer denoted as . 
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(a) Top View 

 

(b) Side View 

Figure 1 The structure of a composite laminate beam. 

Based on the Euler-Bernoulli beam theory, the equation of motion for the composite laminate 

beam can be described by： 

                                                        (1) 

where  is the equivalent bending stiffness of the beam;  is the density and  is the cross-sectional 

area. Based on the Classical Lamination Theory (CLT), the equivalent bending stiffness of beam  

can be calculated by: 

                                                           (2) 

Here,  is bending stiffness;  is the bending-extension coupling stiffness and  is the 

extension stiffness of laminate beam which is related to the fibre angle . The detailed derivation 

process can be found in reference [12]. In this case,  is the driving force and it can be defined 

as: 

                                                        (3) 

Meanwhile, the structural displacement at location x over the beam can be described as: 

                                                          (4) 

Substituting equations (3) and (4) into equation (1), the following equation can be obtained: 

                                                           (5) 

where  and . 

 

2.2 The Green function 

The Green function of the four sub-beams can be determined by using the following equations 

[6]: 

                                                     (6) 

where  is the Dirac function, and it has the following property: 

.                                                     (7) 

The solution for the structural displacement in equation (4) can be obtained by incorporating 

equations (6) and (7) as follows: 

                                                      (8) 
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This can then be solved by using the Laplace transform as: 

                       (9) 

By taking the inverse Laplace Transform, the Green function can be found as: 

     (10) 

where: 

                                          (11a) 

                                          (11b) 

                                          (11c) 

                                          (11d) 

In this study, a cantilever beam structure is investigated, which has the following boundary 

conditions:  

                                                               (12) 

                                                               (13) 

                                                            (14) 

.                                                             (15) 

Substituting equations (9) – (11) into equations (12) – (15), the following can be obtained: 

                                                                   (16) 

where the  is a 4×4 matrix which is a function of angular frequency :  

                             (17) 

Here,  and  are described as: 

                                                   (18) 

]            (19) 

The solution to the forced vibration of a composite laminate beam can then be obtained by solving 

equation (16). 

 

3.   FREE AND FORCED VIBRATION OF A LAMINATE BEAM 

 

In this section, a model of a symmetric FRP laminate beam is constructed with the parameters 

shown in Table 1. The laminate beam has 8 layers with stacking sequence as [0/ ]2s. Based on this 

configuration,  and equation (2) can be simplified as . 
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Table 1: Parameters of the composite laminate beam structure. 

Properties Symbol Value 

Fibre modulus E1 (GPa) 134.49  

Resin modulus E2 (GPa) 10.34  

Shear modulus G12 (GPa) 5 

Poisson’s ratio υ12 0.33 

Density ρ(kg/m3) 1500 

Length L (m) 0.127 

Height h (mm) 1.016 

Width b (m) 0.0127 

 

3.1.    Free vibration 

The free vibration of the laminate beam structure is investigated in this part, by setting . 

Equation (16) is expressed as: 

.                                                                         (20) 

Based on the non-trivial solution of , the natural frequencies and mode shapes can be determined 

by solving equation: 
.                                                                         (21) 

To verify the accuracy of the developed model, a similar composite laminate beam configuration 

used in [13-14] is utilised. Finite Element Model (FEM) for this beam configuration is also 

constructed and the results are compared in Table 2. It can be observed that the natural frequencies 

obtained from the developed model are generally consistent with those from the references  [13-14] 

and FEM analysis.  

 

Table 2: The first three natural frequencies (Hz) of a composite laminate beam. 

Mode References [13-14] FEM Present Model 

1 79.83 81.51 81.61 

2 515.26 511.91 511.49 

3 1442.89 1440.00 1432.20 

 

 

 

3.2.   Forced vibration 

For forced vibration case, considering the driving angular frequency , equation (16) can 

be described as: 

.                                                                          (22) 

where  represents the inverse matrix of . By solving vector  and utilising equation 

(10), the displacement for the laminate beam under the applied excitation can be obtained. In this 
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work, the excitation is in the form of a concentrated harmonic force at location xo as shown in 

following formulation: 

.                                                           (23) 

Therefore, the solution can be solved from equation (8) as follows: 

                                          (24) 

where  as a function of , is described by equations (10) and (11). 

Consider an example where the driving frequency is set as  (angular frequency 

). The amplitude and the location of the driving force are N and 

m (x0=L, right end of cantilever beam), respectively as shown in Figure 2: 

 

 

Figure 2. A composite laminate beam under a concentrated harmonic excitation. 

The fibre angles  for different layers are set as , ,  and  respectively and the 

displacement response at the measurement point located at x=0.108m (x=0.85L) in time domain 

with different fibre angles are shown in Figure 3. A numerical model of these laminate beams is 

also constructed using the finite element method and the results obtained are compared with the 

analytical model in Figure 3(b).  

 

Figure 3. The forced vibration response of a composite laminate beam: (a) Time domain 

displacement responses. (b) Maximum displacements for different fibre angles. 

 

It is observed from the figures that the structural displacement increases as the fibre angle  

increases. This result can be expected because when the fibre angle  increases, the high modulus 

of fibres contributes less to the flexural stiffness of the composite laminate beam. It can also be seen 

from Figure 3(b) that the difference between the FEM and developed model’s results is lower than 

3.5%, so the model is relatively accurate for simulating a composite laminate beam under forced 

vibration.  
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4.    CONCLUSIONS 

An analytical model based on the Green function method has been developed for analysing the 

forced vibration response of composite FRP laminate beams. The accuracy and advantages of 

proposed method were demonstrated by comparing the results with those from the references and 

FEM for both free vibration and forced vibration cases. The work has also investigated the 

relationship between the fibre angle and dynamic response of the beam under harmonic excitation, 

indicating an increase of maximum structural displacement as the fibre angle was increased. The 

proposed modelling method can therefore be used for analysing the forced vibration characteristics 

of composite laminate beams with different fibre angles. It can also be used to optimize the design 

configuration of the composite beams for a variety of applications. 
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